
CS 1112 Introduction to
Computing Using MATLAB

Instructor: Dominic Diaz

Website:
https://www.cs.cornell.edu/courses/cs111
2/2022fa/

Today: Vectors (1D arrays)

https://www.cs.cornell.edu/courses/cs1112/2022fa/
https://www.cs.cornell.edu/courses/cs1112/2022fa/

Agenda and announcements

● Last time
○ Started vectors (1D arrays)

● Today
○ More vectors (1D arrays)

● Announcements
○ Project 3 released last Friday and due Wednesday 10/5

■ Each partner is responsible for the whole project, from working on it
to submitting it

○ Project 3 partners released
○ Tomorrow’s discussion exercises will have two parts:

■ first part needs to be checked off by TA
■ Second part submit on MATLAB grader

Vector recap

A vector (or 1D array) is a collection of like data organized into rows or columns

v 6 -10 5.1

values

1 2 3 Indices

● Index i ranges from 1 <= i <= length(v)
● Accessing the ith element: disp(v(i)) % example: disp(v(1))
● Changing the ith element: v(i) = 10; % example: v(1) = 10;

Drawing a line segment

% position of coordinate 1
x1 = 1;
y1 = 10;

% position of coordinate 2
x2 = 2;
y2 = 7;

plot([x1 x2], [y1 y2], 'b-*')

Here, we essentially have created two vectors!

Line and marker format

Drawing more complicated plots with more points

x = [0 4 3 8]; % x-coordinates
y = [1 2 5 3]; % y-coordinates

plot(x, y, 'b-*')

First input: x coordinates

Second input: y coordinates

Third input: line/marker format

Drawing multiple lines on one plot
% Draw two different line

close all

figure

hold on

x = [0 4 3 8]; % first x-coordinates

y = [1 2 5 3]; % first y-coordinates

plot(x, y, 'b-*', 'LineWidth', 3)

a = [1 3 6 9]; % second x-coordinates

b = [0 1 6 4]; % second y-coordinates

plot(a, b, 'm:*', 'LineWidth', 3)

set(gca,'fontsize', 18);

hold off

Drawing multiple lines on one plot
% Draw two different line

close all

figure

hold on

x = [0 4 3 8]; % first x-coordinates

y = [1 2 5 3]; % first y-coordinates

plot(x, y, 'b-*', 'LineWidth', 3)

a = [1 3 6 9]; % second x-coordinates

b = [0 1 6 4]; % second y-coordinates

plot(a, b, 'm:*', 'LineWidth', 3)

set(gca,'fontsize', 18);

hold off

Sets the width of the line

Sets the size of the font

Simulation

● Imitates real system
● Often requires the use of random numbers
● May require many trials

○ This is a great opportunity to practice working with vectors!

Random numbers
● Random number in programming are typically pseudorandom

○ Pseudorandom number generator refers to an algorithm that uses
mathematical formulas the produce random numbers

○ Not possible to generate truly random numbers from a deterministic thing
like a computer

● Function rand generates random real numbers in the interval (0, 1). All
numbers in this interval are equally likely to occur–uniform probability
distribution

rand() % one random number in (0,1)
6*rand() % one random number in (0,6)
6*rand() + 1 % one random number in (1,7)

floor(6*rand() + 1) % one random integer in [1, 2, .., 6]

Base of intervalWidth of interval

floor: rounds to nearest integer less than or equal to the input (rounds down)
ceil: rounds to nearest integer greater than or equal to the input (rounds up)

Poll Everywhere

rand % output is real number in interval (0, 1)
rand*6 % output is real number in interval (0, 6)
ceil(rand*6) % output is integer in [1, 2, ..., 6]

Initializing a vector
When using vectors in MATLAB you should ask yourself “Do I know how long the
vector should be?”

I need to store a fixed number of values.
● Example: rolling a 6-sided die N times

I need to store values until some condition is met.
● Example: Storing trajectory of a golf ball until it

hits the ground
5 2 … 6

1st roll 2nd roll Nth roll…

dieRolls = zeros(1,N);
for i = 1:N

dieRolls(i) = ceil(rand*6);
end

Initialize to be a vector of all zeros
Initialize to be an empty vector

xCoords = [];
i = 0;
while y > 0

i = i + 1;
xCoords(i) = x;
x = ...

end

Initializing a vector
When using vectors in MATLAB you should ask yourself “Do I know how long the
vector should be?”

I need to store a fixed number of values. I need to store values until some condition is met.

% Initialize
vec = zeros(1, N);

% update values
for i = 1:N

vec(i) = [value];
end

% Initialize
vec = [];

% update values
i = 0;
while [continueCondition]

i = i + 1;
vec(i) = [value]

end

See growingVec.m if you would like to see
small example in action!

Example 1: 2D random walk
A random walk is a random process that describes a path that consists of a
succession of random steps. Scientists use random walks to model share prices,
genetic drift, Brownian motion, animal movements, etc.

Complete the function RandWalk2D_mod that simulates a random walk as
specified below:

function [x, y] = RandWalk2D_mod(N)
% Modified 2D random walk in a 2N+1 by 2N+1 grid
% Walk randomly from (0, 0) to an edge.
% At each time step, the walker steps in each
% direction with probability 1/8 and stays in its
% current location with probability 1/2.
% Walking stops when the absolute value of the
% x-coord or y-coord equals N.
% Vectors x and y represent the path.

N = 11

function [x, y] = RandWalk2D_mod(N)

k = 0; xcurr = 0; ycurr = 0; % initialize position
x = []; y = [];

while abs(xcurr) < N && abs(ycurr) < N
 k = k + 1;

 x(k) = xcurr; % store current position
 y(k) = ycurr;

 % move or don’t move based on random number generator

end

function [x, y] = RandWalk2D_mod(N)

k = 0; xcurr = 0; ycurr = 0; % initialize position
x = []; y = [];

while abs(xcurr) < N && abs(ycurr) < N
 k = k + 1;
 r = rand*8; % random number between (0, 8)

 x(k) = xcurr; % store current position
 y(k) = ycurr;

 % move or don’t move based on random number generator

end

If r in this interval,
do not move

If r in this interval,
move

function [x, y] = RandWalk2D_mod(N)

k = 0; xcurr = 0; ycurr = 0; % initialize position
x = []; y = [];

while abs(xcurr) < N && abs(ycurr) < N
 k = k + 1;
 r = rand*8; % random number between (0, 8)

 x(k) = xcurr; % store current position
 y(k) = ycurr;

 if r <= 1
 xcurr = xcurr + 1; % move right
 elseif r <= 2
 xcurr = xcurr - 1; % move left
 elseif r <= 3
 ycurr = ycurr + 1; % move up
 elseif r <= 4
 ycurr = ycurr - 1; % move down
 end
end

If r in this interval,
do not move

If r in this interval,
move

Move right if r is in (0, 1].

function [x, y] = RandWalk2D_mod(N)

k = 0; xcurr = 0; ycurr = 0; % initialize position
x = []; y = [];

while abs(xcurr) < N && abs(ycurr) < N
 k = k + 1;
 r = rand*8; % random number between (0, 8)

 x(k) = xcurr; % store current position
 y(k) = ycurr;

 if r <= 1
 xcurr = xcurr + 1; % move right
 elseif r <= 2
 xcurr = xcurr - 1; % move left
 elseif r <= 3
 ycurr = ycurr + 1; % move up
 elseif r <= 4
 ycurr = ycurr - 1; % move down
 end
end

x(k+1) = xcurr; % store final position
y(k+1) = ycurr;

If r in this interval,
do not move

If r in this interval,
move

Example 2: All Larger

Task: Write a function allLarger that takes two vectors x, y as inputs. Assume x
and y have the same length. The function should return true if for each index k,
x(k) > y(k) and false otherwise.

6 -10 5.1

5 -11 0

x

y

 6 > 5
-10 > -11
5.1 > 0

6 -10 100 5.1

5 -11 0 200

x

y

 6 > 5
-10 > -11
100 > 0
5.1 < 200

Output: true!

Output: false!

function tf = allLarger(x, y)
% Sets tf = true if all elements of x are larger than
% corresponding elements in y, false otherwise.
% Assumes x and y are the same length.

tf = true;
for i = 1:length(x)

if x(i) <= y(i)
tf = false;

end
end

This code is inefficient.
How might we modify
this code to be more
efficient?

1 421 2 -300 90 4 1.3 3 -7 10

2 56 8 -10 0 0 3 10 65 18

x

y

After checking the first elements, the loop can terminate!

function tf = allLarger(x, y)
% Sets tf = true if all elements of x are larger than
% corresponding elements in y, false otherwise.
% Assumes x and y are the same length.

tf = true;
i = 1;
while i < length(x) && tf == true

if x(i) <= y(i)
tf = false;

end
i = i + 1;

end

Much more efficient!
Dominic happy!

